Question Sheet 4, Continuity I

Continuous functions

Six examples of showing a function is continuous.

1. Let

$$
f(x)=\frac{x^{2}-2 x-15}{x+3}, x \neq-3 .
$$

How should $f(-3)$ be defined so that f is continuous at -3 ?
2. Prove, by verifying the $\varepsilon-\delta$ definition that $h(x)=|x|$ is continuous at $x=0$.

Deduce that h is continuous on \mathbb{R}.
(You need not verify the definition for $x \neq 0$, instead quote results from the lecture notes.)
3. Prove, by verifying the $\varepsilon-\delta$ definition that
i) the function $f(x)=x^{2}$ is continuous on \mathbb{R},

Hint Look back at Question 2 on Question Sheet 1 and replace $a=2$ seen there by any $a \in \mathbb{R}$.
ii) the function $g(x)=\sqrt{x}$ is continuous on $(0, \infty)$.

Hint Look back at Question 11 on Question Sheet 1 and replace the $a=9$ seen there by any $a>0$.
iii) the function

$$
h(x)=\left\{\begin{array}{cc}
x^{2}+x & \text { for } x \leq 1 \\
\sqrt{x+3} & \text { for } x>1
\end{array}\right.
$$

is continuous at $x=1$.
Hint Verify the $\varepsilon-\delta$ definitions of both one-sided limits separately at $x=1$.
iv) the function

$$
\frac{1}{x^{2}+1}
$$

is continuous on \mathbb{R}.
4. Are the following functions continuous on the domains given or not?

Either prove that they are continuous by using the appropriate Continuity Rules, or show they are not.
i)

$$
f(x)=\frac{x+2}{x^{2}+1} \text { on } \mathbb{R} .
$$

ii)

$$
g(x)=\frac{3+2 x}{x^{2}-1}
$$

firstly on $[-1 / 2,1 / 2]$, secondly on $[-2,2]$.
iii)

$$
h(x)=\frac{x^{2}+x-2}{\left(x^{2}+1\right)(x-1)} \text { on } \mathbb{R} .
$$

iv)

$$
j(x)=\left\{\begin{array}{cl}
x+2 & \text { if } x<-1 \\
x^{2} & \text { if }-1 \leq x \leq 1 . \\
x-2 & \text { if } x>1 .
\end{array}\right.
$$

v)

$$
k(x)=\left\{\begin{array}{ll}
\frac{\sin x}{x} & x \neq 0 \\
1 & x=0 .
\end{array} .\right.
$$

vi)

$$
\ell(x)=\left\{\begin{array}{ll}
\frac{1-\cos x}{x^{2}} & x \neq 0 \\
1 & x=0
\end{array} .\right.
$$

5. i) Prove, by verifying the definition, that $\cos x$ is continuous on \mathbb{R}.

Hint Make use of $\cos (x+y)=\cos x \cos y-\sin x \sin y$, valid for all $x, y \in \mathbb{R}$.
ii) Prove that $\tan x$ is continuous for all $x \neq \pi / 2+k \pi, k \in \mathbb{Z}$.
6. Show that the hyperbolic functions $\sinh x, \cosh x$ and $\tanh x$ are continuous on \mathbb{R}.

Composite Rule

7. i) State the Composite Rule for functions.

Evaluate

$$
\lim _{x \rightarrow 0} \exp \left(\frac{\sin x}{x}\right)
$$

ii) State the Composite Rule for continuous functions.

Prove that

$$
\left|\frac{x+2}{x^{2}+1}\right|
$$

is continuous on \mathbb{R}.

Intermediate Value Theorem

8. State the Intermediate Value Theorem.

Give an example of a strictly increasing function f on $[0,1]$ and a value $\gamma: f(0)<\gamma<f(1)$ for which there is not a $c \in[0,1]$ with $f(c)=\gamma$.
9. Show that

$$
e^{x}=\frac{1}{x}
$$

has a solution in $[0,1]$.
10. Show that $e^{x}=4 x^{2}$ has at least three real solutions.

